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Expressions are derived for the n-dimensional Stokes velocity and pressure fields 
(and stream function) corresponding, respectively, to the translation and rotation of 
a hyprsphere in a viscous fluid at rest at  infinity. These are utilized to calculate the 
force and fist antisymmetric stress moment (‘torque ’) on the n-dimensional hyper- 
sphere. They are also utilized to derive the generalizations of FaxBn’s laws for the 
force and stress moment corresponding to arbitrarily prescribed velocity fields on 
the hypersphere surface and at  infinity. 

1. Introduction 
The spectacular success of applied mathematical developments during the past 

decade concerned with critical-point phenomena (Wilson 1971, 1974; Wilson & 
Fisher 1972) and other complex physical processes (Wilson & Kogut 1974; Pfeuty 
& Toulouse 1977; Amit 1978; de Gennes 1979; Witten 1980) has pointed out the 
advantages of regarding the number n of spatial dimensions characterizing a physical 
problem as a variable parameter rather than as the fixed numbers 2 or 3. Introduction 
of this artificial parameter permits the development of perturbation schemes that 
often yield fresh mathematical insights into classical physical problems and their 
underlying scaling laws. 

Low-Reynolds-number hydrodynamics would appear to provide an exceptionally 
fertile field for application of these new ideas, since questions of dimensionality and 
scaling play central roles in the existence of several well-known paradoxes connected 
with solutions of the Navier-Stokes equations in the limit R+O. Thus, Stokes’s 
paradox (Krakowski & Charnes 1951; Finn & No11 1957; Kaplun 1957; Proudman 
& Pearson 1957; Chang 1961) in two dimensions and Whitehead’s paradox (Kaplun 
& Lagerstrom 1957; Proudman & Pearson 1957) in three dimensions arise from the 
existence of a singularity at  infinity in the perturbation flow field of an otherwise 
uniform stream caused by the presence of an obstacle. Here, the requisite scaling in 
the distant flow field is essentially one of stretching the dimensionless distance r /a  
from the centre of the body (a is the body radius and r is the radial distance) via 
multiplication by the Reynolds number R = a U / v  (U = free-stream velocity, 
v = kinematic viscosity). The weakening nature of this singularity in passing from 
n = 2 to n = 3 dimensions is such that whereas no solution of the Navier-Stokes 
equations (satisfying the boundary conditions at infinity) exists at R = 0 in two 

. 
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dimensions, a solution does exist in three dimensions. In  the latter case the singularity 
a t  infinity is not revealed until the inclusion of terms of the first order in R (Oseen 
1927). Thus, it is natural to inquire into the apparently monotonic weakening of the 
nature of the singularity with increasing n. In  particular, does there exist any finite 
value of n beyond which the singularity disappears entirely? 

In the related context of rotational, rather than translational, problems it is known 
(Pai 1956; Landau & Lifshitz 1959) that the two-dimensional R = 0 solution for a 
rotating circular cylinder (R = a2w/v, where w is the angular velocity) represents an 
exact solution of the full Navier-Stokes equations for any R (provided that the R = 0 
pressure field is supplemented by the addition of a centrifugal pressure field), whereas 
the corresponding three-dimensional solution for a rotating sphere (Landau & 
Lifshitz 1959) is not an exact Navier-Stokes solution. However, the latter n = 3 
solution does represent a uniformly valid solution of the Navier-Stokes equations a t  
small Reynolds numbers (see the detailed review of Brenner 19663, pp. 358-359), in 
contrast with the comparable n = 3 translational solution - where Oseen’s, rather 
than Stokes’s, equations provide a uniformly valid solution as R- t  0. 

These observations suggest the potential utility of solutions of the basic translational 
and rotational solutions of the Stokes equations for a hypersphere moving within an 
n-dimensional viscous fluid which is a t  rest a t  infinity. These fundamental solutions 
are derived in subsequent sections. As an easily claimed bonus we also give the 
generalizations of FaxBn’s laws for the hypersphere. 

Readers not specifically interested in the esoterics of n-dimensional Stokes flows 
will, nevertheless, find here the outline of a novel geometrical scheme for solving 
conventional two- and three-dimensional Stokes flow and related linear prob1ems.t 
This general technique takes maximum advantage of linearity and geometric-sym- 
metry arguments to reduce the overall problems from the realm of vector partial- 
differential equations to scalar total differential equations. 

, 2. Geometry of n-dimensional space 
While it may appear convenient, or even necessary, to use n-dimensional hyper- 

spherical polar co-ordinates (r ,  0, q51, $,, ..., &-,) (Bateman 1944; Sommerville 1958; 
Sommerfeld 1964) in the formulation and solution of the hypersphere boundary-value 
problems posed, we nevertheless shall not require this. Rather, it  will suffice to 
consider only the more elementary Cartesian system (xl, x2, . . . , 2,) (Bateman 1944; 
Sommerville 1958), with corresponding orthonormal unit vectors (ftl, 8,, . . . , %,). 
These satisfy a k .  ftl = Ski, with a,, the Kronecker delta. 

In this system the position vector r possesses the representation 

r = %,xl+$,x,+ ... +$,x, = aixi (1) 

(summation convention on repeated indices). The corresponding n-dimensional 
gradient operator and Laplacian are, respectively, 

(2) 

(3) 

v = %1 a/axl + 8, a p x ,  + . . . + an a/ax, = B~ a p x j ,  

v2 = ayax: + az/axg + . . . + az/ax: = a2/axj axj. and 

t The scheme superficially resembles that of Landau & Lifshitz (1959, pp. 63 and 68). How- 
ever, our technique does not use any non-geometrical ‘tricks’ to eliminate the subsidiary con- 
dition that the vector field be divergence-free. 
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In  this representation the dyadic idemfactor I = Vr is 

I = 8,8,+8,8,+ . . .+8 ,  8, e aka,s,. 
r = Irl = ( x ! + x % +  ... +x:)t, With 
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the equation of the surface of a hypersphere of ‘radius ’ a is r = a. In this notation 

F = r / r  = a j x j / r  (6) 

The scalar element of surface ‘ area ’ ds on an n-dimensional hypersphere of radius r 

ds = rn-ldh, (7) 

denotes a unit radial vector. 

is given by (Bateman 1944; Sommerfeld 1964) 

where d h  is an areal element on an n-dimensional hypersphere of unit radius.? The 
surface area 

of a hypersphere of radius a is given explicitly as 

S = an-lA, 

where (Bateman 1944; Sommerville 1958; Sommerfeld 1964) 

in which A, denotes integration over the unit hypersphere. For integer dimensions 
the gamma function (Abramowitz & Stegun 1964) possesses the properties that 

r ( m +  1) = m!,  

1.3.5 ...( 2m- 1) 
2m 

7d. r ( m + i )  = 

The directed element of surface area on the hypersphere is given by 

or, equivalently, in Cartesian tensor notation, 

ds = 3, dsj and dsj = ( x j / r )  ds. (11) 

t We shall not require an explicit representation (Bateman 1944; Sommerfeld 1964) of ds 
in the hyperspherical polar co-ordinate system (r, 8, though it can in fact be 
calculated from knowledge of the metrical coefficients (Happel & Brenner 1973) of this ortho- 
gonal curvilinear co-ordinate system. While, as shown by Sommerfeld (1964), the value of A 
(and hence S )  given in (9) can be obtained by integration of this hyperspherical polar representa- 
tion of ds, the result can also be obtained (Sommerville 1958, p. 135) by purely geometrical 
recursive arguments which do not require such a representation. We streas this point to ompha- 
size the fact that our calculational scheme is purely geometric and does not explicitly or im- 
plicitly rely upon the use of any co-ordinate systems, be they hyperspherical polar or Cartesian. 
Though it may appear that we are, in fact, explicitly utilizing the Cartesian system in sub- 
sequent calculations, this is not really true, ria the interested reader may confirm by reverting 
from Cartesian tensor notation (xj) to invariant vector notation (r). 

$2, .... 
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3. Translation of a hypersphere 
With v(xl, x2, . . . , xn) and p(xl, x2, . . . , xn) the velocity vector and pressure fields a t  

a point r(xl, x2, . . ., xn) of the hyperspace, the creeping motion and continuity equations 
possess their usual forms 

v2vj = (i/p) ap/axj (12) 

and avjlaxj = 0, (13) 

where ,u is the viscosity. 

a fluid at  rest a t  infinity, it is required that 
In  the case of a hypersphere of radius a translating with constant velocity U through 

v k  = U, a t  r = a, (14) 

v k + o  as r+m, (15) 

and p + p m  as r+m, (16) 

where p m  is the uniform pressure a t  infinity. The first of these equations presupposes 
the usual adherence condition a t  a fluid-solid interface. 

In consequence of the linearity of the differential equations and boundary con- 
ditions, we may define (Brenner 1 9 6 4 ~ )  a dyadic ‘velocity ’ field 

F k ( x l ,  x2, *.*)xn) V(r) 

and a vector ‘pressure’ field P k ( x 1 ,  x2,. .., xn) = P(r) via the linear relations 

v j = & k u k  ( v = v . u ) ,  (17) 

p - p m  = P p k u k  (p-pm = p P a u ) .  (18) 

Upon substituting these into (12)-( 16) and eliminating the constant vector U from 
the resulting expressions, the tensor velocity and pressure fields ( y k ,  Pk) are found to 
satisfy the following differential equations : 

P k + o  as r+m. (23) 

Equations (19) to (23) are purely geometric relations. Specifically they show that 
the fields &k and P k  are wholly geometric in nature, being independent of the magnitude 
and direction of the parameter U and of the scalar p. As such, a t  any field point r 
these higher -order tensor fields depend only upon the geometry of the hyperspherical 
particle. (The n-dimensional Euclidean space is, of course, a flat space, so that there 
exist no hidden geometrical parameters characterizing the metrical properties of this 
space, such as its curvature.) An immediate consequence of this fact is that the 
geometric symmetries of the tensor fields T$k and Pk must be the same as that of the 
hypersphere itself. As such, the fields (V, P) must be expressible solely in terms of the 



Motion of n-dimensional hypersphere 201 

position vector r (and its tensor invariants, such as r = 1 rl and the dyadic idemfactor 
I = Vi-). This observation provides the ansatz necessary to solve the problem. 

The only vector field which can be derived from r is r itself and scalar multiples 
thereof, which can at most be functions of r. Thus, based upon the prior geometric 
arguments, P must necessarily be of the form 

P = rf(r), i.e. p k  = x k  f ( r ) ,  (24) 

where f is a scalar function of r to be determined. 
Similarly, the only dyadic fields which can be formed from r and its invariants 

are rr and I, and scalar multiples thereof, which can depend at most upon r .  This 
requires a priori that V be of the form 

V = Ig ( r )  + rrh(r), i.e. 6, = &jkg(r) + x j x ,  h(r), (25) 

with g and h scalar functions of r to be determined. 
The differential equations and boundary equations satisfied by the scalar fields f, g 

and h are readily determined with the aid of the following elementary Cartesian tensor 
identities: 

and aP(r)/aXj = (x , /r)  dP(r) /dr .  

In  the first place, (19) and (20) require that 

a X j / h k  = 8jk ,  8kk = n, 

v2Pk = 0. 

V 2 P k = V 2 ( x k f ) = x k  

But, from (24), 

where (Bateman 1944; Sommerfeld 1964) 

is the hyperspherically symmetric n-dimensional Laplace operator. Equation (26) 
requires that the term in square brackets appearing on the right-hand side of (27) be 
zero identically. Integration easily yields the general solution 

f = C1r-"+C, 

with C, and C integration constants to be determined. Condition (23) requires that 

(29) 
C = 0, whence we obtain 

Thus, except for the numerical value of C,, the pressure field is uniquely determined 
independently of the velocity field as a consequence of the required geometric sym- 
metry. 

P k  = c1 x k  r-n. 

From equations (25) and (28) there follows 
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Hence, (19 )  requires that each of the two above terms in square brackets vanish 
separately. The second of the resulting equations involves only the function h(r),  
which therefore may be solved independently of the first to obtain 

(31 )  

with C, and C, new integration constants to be determined. This result may be sub- 
stituted into the first of the pair of equations resulting from the vanishing of (30) to 
obtain the total differential equation satisfied by g(r) .  The resulting equation for g 
is readily integrated to obtain 

( 3 2 )  

provided that n $. 2 .  Here, C4 and C, are two new additional integration constants 
to be determined. 

Except for the algebraic determination of the five constants C, to C,, the problem 
is now solved. It remains yet to satisfy the continuity equation (20). From ( 2 6 )  it 
emily follows that 

h = ?&', r-n + C, r-(n+2) + C,, 

g = - n-lC, r-n - n-1C r2 - (n - 2)-1 C r-b-2) + C 
3 4 5, 

8vik - dh 
-- axj [ 'd-Y+r%+(n+l)h]xk .  r d r  

Introduction of ( 3 1 )  and ( 3 2 )  into this relation thereby yields 

Hence, the continuity equation (20) will be satisfied provided that 

c, = 0, 2c4+c1 = 0.  (33) 

Upon collecting together those results pertaining to the tensor velocity field we 
have thus far that 

Satisfaction of the boundary condition ( 2 2 )  at infinity requires that C, = 0. The 
remaining boundary condition ( 2 1 )  on the hypersphere surface requires that, at r = a, 
the first term in square brackets in (34) have the value unity and that the second 
term in square brackets be zero. In this manner the two constants C, and C, are 
found to have the values 

n(n - 2 )  n(n - 2 )  
(n - 1 )  2 ( n -  1 )  

c, = - an-,, c, = --an. (35 )  

In  summary, the solutions of the tensor Stokes equations for a translating hyper- 
sphere are, in invariant form, 

v =A 2(n-1)  ( z ) " [ n ( : ) 2 + n - 2 ]  r I+- n'n-2'(")"[(c)2- 2 ( n - 1 )  r l ] e p ,  (36) 

P = n(n --(-) - 2 )  1 'a n-l,, r, 
( n - 1 )  a r 

and (37 )  
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for n > 2, with F defined as in (6 ) .  From (17)  and (18 )  the physical velocity and pressure 
fields are given by 

and 

v = u  2 ( n - 1 )  T 
r ) n [ n ( k ) 2 + n - 2 ] ~ + -  n(n 2(n-  - 1 )  2 ,  u (:) [ (i) * - I] FF . fi (38)  

F . 6 ,  n(n- 2 )  pU a n-l 
p=pco+-- n - 1  a ( y )  (39)  

where u =  IUI (40)  

is the magnitude of the translational velocity vector, and 

tJ = u / u  
denotes a unit vector in the direction in which the hypersphere translates. Alter- 
natively, in Cartesian tensor form, 

and 
n ( n - 2 ) p  a n-lxk:kk 

T- p=pm+-- ( n - 1 )  a (-) r (43)  

In  the case n = 3 these correctly give the usual Stokes velocity and pressure fields 
for a translating sphere (Happel & Brenner 1973). For n = 2 Stokes paradox is clearly 
in evidence, since in that case equation (38)  fails to fulfil the requirement that v 
vanish a t  r = 03. It is interesting to observe that the paradox does not exist in a 
space of n = 2 + e dimensions, where e may be taken to be arbitrarily small. 

Equations (38)  and (39) show that v /U N O(a/r)n-2 and (p-pco)a/pU N O(a/r)"-l 
as r/a+oo. Thus, the greater the dimensionality of the space the more rapidly is the 
disturbance generated by the moving hypersphere attenuated. 

Present results for the velocity field are recast in the form of an n-dimensional 
stream function in 6. 

3.1. Force on the hypersphere 

We proceed to derive the analogue of Stokes's law for the force exerted by the fluid on 
the translating hypersphere. This vector force is given by 

n I 

where nij = - ai jp  +p(av,/ax, + avi/axj) (45)  

is the Newtonian stress tensor for an incompressible fluid, and ds, is given in (1 1 ) .  From 
(42)  and (43) we readily obtain 

n(n - 2 )  
n - 1  

dSinijJ,=, = -- p n - q  d h  (46)  

upon suppressing the irrelevant constantp,. With use of (9), we find the vector force 
obtained upon integration of (44)  to be 

In agreement with expectations, this force acts in a direction opposite to that in 
which the hypersphere translates. 
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For n = 3 this properly reduces to Stokes’s law, F = - 6quaU. It is clearly de- 

It is perhaps more meaningful to express (47) in the form of the force per unit of 
generate for n = 2, corresponding to Stokes paradox. 

surface ‘ area ’ 8 [cf. equations (8) and (9)], namely 

F n(n-2)pU 
s = -  (n- 1 ) a  - 

This result shows that, all other things being equal, the force per unit area diminishes 
with increasing radius a and increases with increasing n. The latter obviously arises 
from the fact that the velocity gradients causing the stress increase with increasing 
n owing to the more rapid decay of velocity with distance - from the value v = U 
on the hypersphere surface to v = 0 at infinity. 

4. Rotation of a hypersphere 
The kinematic basis of rigid-body motion in n-dimensional space is treated in the 

textbook by Synge & Schild (1949, p. 156). In particular, if a rigid body in hyperspace 
rotates steadily about a fixed point 0, the velocity a t  any point in the body relative 
to 0 is given by uj = x k  Qkj  where x k  is the position vector of the point relative to 0. 
The angular velocity dyadic s1 is a constant skew-symmetric second-rank tensor: 

Qjk = - n k j .  (49) 

[It is only in 3-space that the angular velocity can be represented alternatively as a 
pseudovector a, since for n = 3 the number of independent components of a skew- 
symmetric second-rank tensor is three - the same as the number of independent 
components of a (pseudo)vector (Synge & Schild 1949; Goldstein 1950). This is not 
the case for any other value of n, except in a special sense for the case n = 2.1 

Consider a hypersphere rotating about an ‘ axis ’ through its centre 0, corresponding 
to r = 0. Since fluid is assumed to adhere to the boundary points of the hypersphere, 
the boundary condition satisfied a t  its surface by the fluid velocity vector v is 

vj  = Xk!&j a t  r = a. (50) 

In addition, boundary conditions (15) and (16) at r = co continue to obtain in the 
present problem. 

In consequence of the linearity of the differential equations (12) and ( 13) and the 
boundary conditions, we may define (Brenner 1964a, b,  c) a triadic ‘velocity’ field 
K j k ( x 1 ,  x2,  . . . , 2,) = v( r) and a dyadic ‘ pressure ’ field <.&I, x2 ,  . . . , x,) E P( r) via the 
linear relations 

Vi = K j k  Qkj (v = v: a), (51) 

P - P m  = &k Qkj = pp: (52) 

The double-dot notation follows the ‘nesting’ convention of Chapman & Cowling 
(1970). 

Suppose that T . .  .jk is a Cartesian tensor of any rank which is symmetric in its last 
two indices (‘ postsymmetric’), i.e. T . . . j k  = T . , . k j .  It is easily shown that T . . . j k  Qkj  = 0 
as a consequence of the skew-symmetric nature of Qkj .  Hence, without loss of gener- 
ality we may choose 

v. w k  =-v i k j ,  q k  = -pk j ,  (53) 
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since only the post-antisymmetric parts of these tensors will contribute to the physical 
quantities w, andp - p a  in (51) and (52). 

Substitute (51) and (52) into the differential equations (12) and (13) and the 
boundary conditions (50) and (15)-(16). Upon eliminating the constant S2 from the 
resulting expressions and using (53), the tensor velocity and pressure fields (&jk, q k )  

are found to satisfy the following differential equations, 

v 2 K j k  = a<k /aX$ ,  (54) 

and a & j k / a x i  = 0, (55)  

K j k  = i ( 8 i j X k - 8 i k x j )  at r = a, (56) 

K j k - f o  as r+m, (57) 

P j k + O  as r+m. ( 5 8 )  

and boundary conditions, 

As in the comparable translational case it may be concluded from this system of 
equations and boundary conditions that the fields ( K j k ,  P k j )  are purely geometric in 
nature, and hence that the geometric symmetries of these fields must be the same 
as that of the hypersphere itself. As such, the fields (V, P) must be representable 
solely in terms of the position vector r and its tensor invariants. 

The only invariant dyadic fields which can be derived from r are the dyadic idem- 
factor I and rr, as well as scalar multiples thereof, which can at most be functions 
of the scalar r .  Thus, q k  must possess the same general form as (25). However, in 
consequence of the skew-symmetric nature of <.k noted in (53), each of these scalar 
multiples must be identically zero. Accordingly. it  follows immediately that 

P j k  = 0. (59) 
The corresponding triadics which can be formed from r and its invariants are 

scalar multiples of? 
rrr, Ir, rl and (Ir)+ = +(rl), 

i.e. x ( x j x k ,  8 i j x k ,  8 jkx,  and & X j ,  respectively. The only combination which can be 
formed from these four tensors that is antisymmetric in the last pair of indices is the 
single term x k  - 8$k x j .  Hence, it may be concluded on symmetry grounds that v 
must be of the form 

or, in invariant notation, 
K j k  = ( a i j x k - 8 i k x j )  F(r), 

V = [lr-(lr)+]F(r), 

with P a scalar function of I rl to be determined. 
Upon forming the divergence of (60) it is found that the continuity equation (55 )  

is automatically satisfied for any choice of the unknown function F(r). 
From (59) and (54) it follows that pijk satisfies Laplace's equation, 

v 2 X j k  = 0. (62) 

With use of (60) this eventually leads to the total differential equation 

2 dF 
r dr 

VfF+- - = 0 

t If a, b, c me any vectors, the post- and pre-transpose operators are defined by the relations 

(abc)' = acb and '(abc) = bac. 
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satisfied by F ,  with VZ, the radial Laplacian given in (28). This equation is easily 
solved to obtain the general solution 

F = C, r-n + C,. (64) 

The boundary condition at infinity (57) requires that C, = 0, whereas the boundary 
condition (56) on the hypersphere surface requires that C, = sun. Consequently, the 
tensor velocity and pressure fields are 

or, in invariant form, 

V = -  - [lr-(Ir)+] and P = 0. (66) 2 r  l o "  

From (51) and (52) these lead to the following expressions for the physical velocity 
and pressure fields : 

n 
vi = (:) x j ~ j i ,  i.e. v = (:)nr.a, (67) 

and p = p m  = const. (68) 

4.1. Torque ' on the hypersphere 

The first skew-symmetric moment T of the stresses acting over the hypersphere 
surface is defined as 

I 

From (45), (67), (68) and (1  1)  a straightforward calculation yields 

dsi rillrea = npQli(x,/r) ds 

q k  = npun(8jm &kl- &jl &km) nli Aim,  

(70) 

upon suppressing the irrelevant constant p ,  arising from (68). Hence, with use of 
(7) there follows 

(71) 

(72) 
xi xrn 

wherein Aim = lA1 7 
This dyadic integral is readily evaluated upon recognizing that as a consequence of 
the geometric symmetry of the hypersphere it must be isotropic, and hence of the 
form A,, = a,,, A .  The scalar constant A may be determined by contracticg on the 
indices to obtain A,, = nA.  Therefore, since xi xi = r2, we obtain 

A = --s,,dh 1 = ;, A 

with A given by (9). Consequently, 

(73) 

Alternatively, the antisymmetric stress moment per unit of wetted surface area S is 

T/S = -2pan,  (75) 
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upon employing (8) and (9). This result is independent of the dimensionality n of the 
space. The negative sign is, of course, merely a manifestation of the fact that the 
'torque ' exerted by the fluid on the hypersphere acts in a ' direction ' opposite to that 
of the rotation. 

In the physically important caseb of n = 2 and n = 3 it is possible to express (74) 
in a more conventional form involving the torque pseudovector t (Synge & Schild 
1949) 

and the angular velocity pseudovector o, 

wl = &ljk n jk ,  (77) 

with ejkr the usual three-dimensional permutation symbol. Thus, upon multiplying 
(74) by q j k  and utilizing these definitions, we obtain 

47lrt" 
t = - -pano 

rein, 
(n = 2 or 3). 

For n = 2 and 3, respectively, this yields 

and 

t = -471pa2w 

t = -8npa3w 

(n = 2), 

(n = 3). 

These expressions agree with the known results for the circular cylinder (Pai 1956) 
and sphere (Landau & Lifshitz 1959), respectively, as do the corresponding formulas 
(67) and (68) for the velocity and pressure fields, since in these cases r .a = o A r. 

5. Faxen's laws for the hypersphere 
As in comparable three-dimensional sphere problems (Brenner 1964c, 1966a, b ) ,  

having solved the problem of uniform translation and rotation it is essentially a trivial 
matter to obtain expressions for the force and skew-symmetric stress moment for 
situations involving arbitrary boundary conditions v on the hypersphere surface and 
arbitrary boundary conditions VOD a t  infinity. Here, P ( r )  [and p"(r)] is itself a 
solution of the Stokes equations (12) and (13) possessing no singularities within the 
interior of the space occupied by the hypersphere. An obvious generalization of the 
analysis of Brenner ( 1966 a) yields 

and [r(vm - v) - (v"- v) r] ds, 

where 8, denotes integration over the surface of the n-dimensional hypersphere of 
radius a. These formulas express the requisite dynamical entities directly in terms of 
the prescribed boundary data v on the hypersphere and the prescribed field VOO at 
infinity. Their calculation is thus reduced to a quadrature, not requiring the actual 
solution of the relevant boundary-value problem. 

As an elementary application consider the case of the uniform translation of a 
hypersphere through a fluid a t  rest at  infinity. Thus, we put v = U at r = a and 



208 H .  Brenner 

P = 0.  Upon integration (81 )  yields the value for the force already cited in (48) .  
From (82) the corresponding moment is 

T = Y I U s S n r d s - ( I S  r d s ) U ] .  

As is easily demonstrated, the symmetry of the hypersphere is such that 

l S n r d s  = 0, 

whence it follows that T = 0. Thus, the translating hypersphere experiences no 
'torque' - an expected result. Similarly, by putting v = r . SZ [cf. (50)] in (81)-(82), 
and setting VaO = 0, we recover (75) for the 'torque' on a rotating hypersphere. In 
addition, we arrive at  the conclusion that F = 0, showing that a hypersphere rotating 
about an axis through its centre experiences no force. 

In the case where the hypersphere is at  rest, equations (81) and (82) reduce to 

F =  sSn vm ds 

and = n' ;ssn ( rvm - P r )  ds. (84)  

Since P possesses no singularities in the interior of the space occupied by the hyper- 
sphere it may be expanded in a Taylor series about the hypersphere centre 0 to obtain 

voo = v , " + r . ( V v m ) , + - r r :  ( V V P ) , +  .... 1 
2! 

In  this manner we obtain 

Each of these surface integrals is necessarily isotropic. Since there exist no isotropic 
tensors of odd rank, we have immediately that 

r d s  = 0,  r r r d s  = 0, ... . s s  
The isotropic tensors of even rank may be evaluated by the 'contraction' methods 
employed in connection with equation (72). This yields 

Consequently (see also the appendix), 

... . 

+ 6 ! n ( n + 2 ) ( n + 4 )  1 . 3 . 5 ~ ~  ( V s P ) , +  ...I. (86) 
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Now, V" satisfies the Stokes equations, 

These show that 
V 2 P  = (l/p)Vp"O, V . P  = 0. 

V2pW = 0, 
and hence that V2mP = 0 (m 2 2 ) .  

Thus, the infinite series in brackets in (85) terminates after only two terms. In  this 
manner (83) adopts the form 

A similar analysis of (84) eventually yields the single term 

2ntn 

W n )  
T = -pan[VP - (VV")'],. 

Termination of the infinite series that would otherwise have appeared in (88) is 
based upon the fact that 

V2m[VP-(VP)+] = 0 (m 2 1). (89) 

This relation follows by taking the gradient of the first of equations (86) to obtain 

V 2 V P  = ( l / p )  vvpm. 

Upon forming the transpose of this identity and subtracting from the above we thereby 
obtain (89) for the case m = 1. The proof for m > 1 then follows by successive applica- 
tions of the operator V2 to the case m = 1.  

For a space of n = 3 dimensions, the generalized Faxen laws (87) and (88) reduce 
to their usual forms (Rrenner 1964b, 1966a, b) ,  

and 

whereww = tV A P. 

t = 8npa3w,", 

6. Stream function for a translating hypersphere 
The velocity field (38) for a translating hypersphere can be expressed alternatively 

in terms of an n-dimensional stream function. We deliberately refrained from intro- 
ducing this concept in $3, where it should otherwise naturally have appeared, in 
order to emphasize clearly the geometric nature of the symmetry arguments advanced 
there. Thus, we were able clearly to demonstrate the co-ordinate-free nature of our 
techniques by not confusing use of the position vector r or scalar I r I with comparable 
variables appearing in the generalization of spherical co-ordinates to n dimensions. 
Nor should our use of Cartesian tensors suggest either that we have utilized a Cartesian 
co-ordinate system in resolving the fundamental boundary-value problems posed. 
Their introduction was purely pragmatic in the sense that the entire geometric 
analysis could have been performed entirely in invariant r form, which is consistent 
with the spirit of the present contribution. 
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Despite this purist stance,? it would be overstating the case to claim that no 
advantages exist to utilizing a convenient co-ordinate parameterization that readily 
lends itself to the geometry of the hypersphere. Towards this end introduce a system 
of n-dimensional hyperspherical polar co-ordinates (Bateman 1944; Sommerfeld 1964) 
( r ,  8, q5,, q5,, . . ., q5,J defined relative to a Cartesian system via the relations 

x1 = r cos 8, x, = r sin 8 cos q5,, x3 = r sin 8 sin 

x, = r sin 8 sin q51 sin q5,.. . sin Qn-3 sin q5,-,. 

cos q5,, 
x,-~ = rsinesinqi,sinq5, ... ~inq5~-,cosq5~-,, - * ' )  (90) 

In order to span all points in space, - co < xk -= co ( k  = 1,2 ,  . . . , n),  the appropriate 
rangeofthese co-ordinates is 0 c r < co, 0 < 8 < n, 0 c q5i < 7r ( j  = 1,2, ..., n - 3 )  and 
0 < q5,-, c 27T. 

With q1 = r ,  q 2  = 8, 43 = $1, * . * )  qn-1= $12-33 qn = q5n-2, (91) 

a system of curvilinear co-ordinates (Happel & Brenner 1973), the metrical Coefficients 

(with dlk a line element along the qk-co-ordinate curve) may be computed from the 
hk = ldqk/dlk\ (no sum on k) 

formulae 

This yields 

h, = 1, h, = l /r,  h, = I,/rsinO, h, = l/rsinOsin$,, ..., 
h, = l / r  sin 8 sin $,.. .sin $n-3 

for the metrical coefficients. 
The vector (no sum on k) 

represents a unit tangent vector to the q,-co-ordinate curve in the direction 
braically increasing values of qk. The hyperspherical polar system may be 
strated to be an orthogonal system in the sense that 

$k * $1 = &kl, 

(92) 

(93) 

(94) 

of dge- 
demon- 

(95) 
with 
definitions (90) and (91) that 

the Kronecker delta - a fact that may be confirmed by observing from the 

for each indicia1 pair (k, 1 )  = 1,2,3, .. . , n (k $; I ) .  

co-ordinate-free manner. This is readily done by noting that, with 

where jis any function depending only upon r.  Hence, in succession, 

t To satisfy wholly the purist, it is necessary to demonstrate that (28) can be derived in a 

r = lr l ,  V j ( r )  = (a/ar) f ( r )  = rr - ldf ldr ,  

Vaj = V .  V j  = V .  (rr-1 d j / d r )  
= ( V . r )  r - 'df /dr+r .V(r- 'df /dr) .  

Since V . r = n and r . V E r a/,%, this yields 
d y  n-1 d j  

Vaf(r) = -+-- 
dra r dr' 

which is equivalent to (28). 
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Inverse to (94) for such an orthogonal system is the generic relation (Happel t 
Brenner 1973) 

" A ak = ,x qjhj- (k = 1,2  ,..., n), 
1 = 1  aqj 

which permits each of the Cartesian unit vectors $k to be explicitly expressed in terms 
of the curvilinear unit vectors &. Of particular interest is the case k = 1, which yields 

$1 = Fcose-Qsine. (97) 

For convenience choose the translational velocity vector U of the hypersphere in 
(14) to lie along tke polar axis xl. Thus, U = ?tl U where U is given by (40). Con- 
sequently, in (41) U = ftl, whence from (97) 

G = Fcose-Qsine. (98) 

Hence, the angle 0 may be defined in invariant form as 
A 

e = cos-1(~.u)  (0 G e < m), (99) 

(100) 

since from (95) F .6 = 0. Introduce (98) into (38) to obtain 

v = Fv, + b e ,  

where 

A 
Observe that the remaining (n - 2) velocity components, v + ~  = +k . v (k = 1,2, . . . , n - 2) 
are such that 

(103) 
in present circumstances. 

In  view of the latter condition in conjunction with the fact that the non-zero 
velocity components v, and V g  are functions only of ( r ,  e), and hence independent of 
$1, $2, . . . , g5n-2, it is possible to represent the velocity field via an n-dimensional 
stream function, $(r,O).  That this is indeed the case may be seen as follows. The 
generic expression for the divergence of a vector field in orthogonal curvilinear 
co-ordinates is (Happel & Brenner 1973) 

v#l = = . . . = v$$-* = 0 

with vj = B j .  v and H = h, h, . . .h,. Consequently, in hyperspherical polar co-ordinates, 
with v given by (100) [and conditions (103) prevailing], we have in present circum- 
stances that 

l a  
r sin"-2 0 a8 

V.V=-- a (rn-lv,)+ m-l ar - ( sinn-2 0 ve) . 

The continuity equation W . v = 0 will therefore be satisfied automatically by any 
choice of a function $(r,  0)  such that 
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With v, and v, given explicitly by (101) and (102), it follows upon integration that 
the stream function is 

to within an arbitrary additive constant. For completeness we note that in this 
notation the pressure field p(r ,  8) obtained from (39) is 

n(n-2)pUcosB 
p=pa+-- (n-1) a 

For case n = 3 the above relation reduces to the well-known Stokes stream function 
for flow around a sphere (Happel & Brenner 1973). 

The surfaces $(r, 8 )  = constant define the stream surfaces. Thus, the streamlines 
of the flow lie simultaneously in the ‘ meridian planes ’ $1 = constant, q52 = constant, . . . , 
q5n-2 = constant. This fact is consistent with equations (103), which show that no 
fluid motion occurs across any ‘meridian plane’. It is interesting to note that the 
powers of r appearing in the expression (105) for the stream function are explicitly 
independent of the dimensionality n of the space. 

The stream function for a uniform streaming flow with velocity U in the negative x1 
direction is 

$=- (rsin8)n-l. (107) n-1 

Addition of this to (105) yields the stream function? for streaming flow in the negative 
x1 direction with velocity U past a stationary hypersphere. The corresponding pressure 
field continues to be given by (106). 

7. Discussion 
The addition of a uniform stream -U to (38) gives the velocity field, v’, say, for 

streaming flow with velocity -U past a stationary hypersphere. At large distances, 
r /a  -+ 00, the velocity field appropriate to this problem is asymptotically of the form 

V’ N - U + UO(a/r)n-2. 

From this may be computed the ratio of inertial to viscous forces: 

p(v’.Vv’I R(r/a) 
,ulV%’I n-1  

for n 9 2. Here, R = Ua/v.  Thus, just as in the n = 3 case (Proudman & Pearson 
1957), Stokes’ solution is not a uniformly valid solution of the full Navier-Stokes 
equations in the limit where R+O. Rather, Stokes’ solution becomes invalid a t  
distances r / a  exceeding 

N- 

r - = 0 (q. 
a 

t One of the referees kindly brought to my attention the fact that this n-dimensional stream 
function has already been given by Burns (1969) as an application of GASPT (generalized 
axially symmetric potential theory). In this context it is worth emphwizing that our general 
geometrical methods for solving hypersphere boundary value problems are not limited to such 
axially symmetric flows. For example, the geometrical scheme may be used to solve the non- 
axisymmetric problem of shearing flow past a hypersphere (cf. Brenner 1964b for the comparable 
n = 3 case) by introducing into (51) and (52) the symmetric rate-of-strain tensor s k j  = 8 j k  in 
place of the antisymmetric angular velocity tensor R,, = - &. 
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Whitehead's paradox therefore always obtains irrespective of the dimensionality n. 
However, since n figures explicitly in the above criterion, for a fixed Reynolds number 
the nature of the singularity is the weaker the larger is the dimensionality n of the space. 

Our emphasis in this paper has been concerned exclusively with viscous flow at 
asymptotically small Reynolds numbers. However, n-dimensional fluid mechanics 
provides some interesting possibilities for the complete Navier-Stokes equations, 
valid at all Reynolds numbers, albeit in spaces of dimensionality n > 3. 

All known non-trivial solutions of the complete Navier-Stokes equations derive, 
in essence, from the existence of special similarity transformations. In  general such 
transformations obtain only in a space of one particular dimensionality n, but no 
others. Thus, for example, there exists an exact solution (cf. Landau & Lifshitz 
1959, pp. 86-88) of the complete Navier-Stokes equations for an isolated point-force 
singularity in a fluid at rest at  infinity for the case of n = 3, but not for n = 2. Con- 
versely, for n = 2 there exists an exact solution for a point couple singularity,* but 
not for n = 3. As a final example, we note that for n = 2 there exists an exact solution 
of the Navier-Stokes equations (cf. Landau & Lifshitz 1959, pp. 81-86) for radial 
flow in which the stream function $(8) is independent of r - corresponding to Jeffery- 
Hamel flow from or towards a point source at the apex of two intersecting planes. No 
comparable exact solution is known, however, for n = 3 - corresponding to the 
circular cone (Goldstein 1965; Ackerberg 1965). Clearly, by expanding the domain of 
the search beyond three dimensions the possibility exists of deriving many more 
solutions of the full Navier-Stokes equations via such similarity arguments. In turn, 
this allows the use of perturbation methods involving a small parameter E to extend 
these new exact solutions from n backwards to n - 1.1 dimensions - that is, backwards 
towards the usual domains n = 3 and n = 2 of physical interest. Such perturbation 
methods have found wide use in other fields of physics, as outlined in the Introduction, 
and there exists every reason to suppose that such methods will also find extensive 
applications to viscous flow problems. 

A companion paper (Brenner i981) presents the solution for Poiseuille flow through 
an n-dimensional hypercylinder. 

This research was supported by the United States Public Health Service under 
grant no. 2POl HL 18208-06. 

Appendix. Symbolic operators in n-dimensional space 

1966a, b) upon employing the symbolic Taylor-series expansion 
Equation (85)  may also be derived via symbolic-operator methods (Brenner 

va3 = exp (r ,V,) v;. 

Define the (symbolic) angle 8 as r .V, = (rV,) cost', where V, = (V!), with V$ the 
Laplace operator in r,-space. In  the notation of Q 6, the scalar element of surface area 
on a hypersphere of radius r is given by (7), wherein 

dh = sin@ 8d@, 

$ This simple solution represents the limiting case of the steady rotation of a circular cylinder 
(Pai 1956), from which it is easily derived by allowing the cylinder radius to tend to zero while 
allowing the couple to remain non-zero. 
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in whichp = n-2 and 

dQ, = sinp-1 q51 sinp-2 q5z.. . sin2 q5p-z sin q5p-l . dq5p-l 
Therefore, 

in which (Sommerfeld 1964) 

However (Gradshteyn & Ryzhik 1965), upon putting 2u = p = n - 2, 

(Re u > - &), for any constant parameter p, wherein I, is the modified Bessel function 
of the fist kind. In this manner one obtains 

with u = in - 1. Upon utilizing the infinite series representation of the modified Bessel 
function (Abramowitz & Stegun 1964) this becomes 

When applied to the vector field v," this result is equivalent to (85). 

similar manner by utilizing the identity 
The comparable integral appearing in the stress moment may be derived in a 

ds rexp (r .vo) = a j dsexp (r .VJ, 
J'r=a avo r=a 

in conjunction with 
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